SOLUCIÓN DE ECUACIONES DIFERENCIALES CON SCIENTIFIC
NOTEBOOK
Ing. Luis Manfredo Reyes
Scientific Notebook Version 5.5 es un paquete de software
desarrollado por MacKichan para cumplir con dos tareas básicas: actuar como un
procesador de textos orientado a la matemática (estilo LaTex), y por otra
parte, es un área de trabajo para cálculos numéricos y simbólicos, como los que
realizan estudiantes y profesores en el proceso de enseñanza-aprendizaje.
Con éste software, es posible realizar operaciones con
expresiones algebráicas (expandir, factorizar, simplificar), resolver
ecuaciones en una variable, sistemas de ecuaciones simultáneas, operar
matrices, cálculos estadísticos, cálculo diferencial e integral, ecuaciones
diferenciales, y graficas en 2 y 3 dimensiones.
Scientific Notebook Version 5.5 ha sido desarrollado sobre
la base del motor de cómputo MUPAD 3.1, el cual es utilizado en sustitución del
anterior Maple, que . también es utilizado por el software Matlab y el Mathcad.
Una de las características importantes que tiene el
Scientific Notebook, es la solución de ecuaciones diferenciales de diferentes
tipos, lo cual lo convierte en una herramienta poderosa para la enseñanza de
éste tema en los cursos de cálculo
Se asume que el lector tiene conocimiento del manejo
básico del Scientific Notebook.
Sintaxis:
Una ecuación diferencial se puede escribir en el
Scientific Notebook de dos formas:
Usando la nomenclatura de Leibnitz para identificar las
derivadas. ejemplo: y´+2xy=x
No se puede usar la forma polinomial: P(x,y)dx+Q(x,y)dy=0.
En éste caso se debe hacer la manipulación algebráica para acomodarla a una de
las dos formas que sí acepta el programa
Procedimiento
Luego de ingresar la ecuación en el estilo "M",
se ejecuta lo siguiente:
COMPUTE-->SOLVE ODE--> y escoger una de las formas
posibles que tiene el programa
EXACT: Solución algebráica por métodos estándar
LAPLACE: sustitución por transformada de La Place
NUMERIC: aplicación de un método numérico para resolver un
caso de valor inicial
SERIES: conversión de la ecuación a una serie para poder
resolverla
Poner una gráfica del proceso
IMPORTANTE: No todos los métodos producen la misma
respuesta, debido a los algoritmos de solución que se aplican.
En cada caso que se resuelve, el programa cambia los índices de las constantes
del modelo final, para evitar confusión .
ES POSIBLE IMPLEMENTAR SOLUCIONES PASO A PASO PERO DEBEN
SER REALIZADAS POR EL USUARIO
EN ALGUNOS CASOS LA SOLUCIÓN ES A MEDIAS, ES DECIR QUE QUEDA PENDIENTE RESOLVER ALGUNA EXPRESION
CASO 1: Ecuaciones diferenciales Separables:
,
Solución por LaPlace: No produce solución
Resuelva
Solución por Laplace No produce solución
Solucón exacta: como hay un valor inicial se debe crear
un Display, en la primera fila se coloca la ecuación y en la segunda la
condicion inicial
La famosa ecuación diferencial que define el crecimiento
exponencial
No hay comentarios:
Publicar un comentario